
 

Basics of a Quartz Crystal Microbalance 
 

 

Introduction 

This document provides an introduction to the 

quartz crystal microbalance (QCM) which is an 

instrument that allows a user to monitor small 

mass changes on an electrode.   The reader is 

directed to the numerous reviews
1
 and book 

chapters
2
 for a more in-depth description 

concerning the theory and application of the 

QCM.  A basic understanding of electrical 

components and concepts is assumed. 

The two major points of this document are: 

• Explanation of the Piezoelectric Effect 

• Equivalent Circuit Models 

 

Explanation of the Piezoelectric Effect 

The application of a mechanical strain to certain 

types of materials (mostly crystals) results in the 

generation of an electrical potential across that 

material.  Conversely, the application of a 

potential to the same material results in a 

mechanical strain – a deformation.  Removal of 

the potential allows the crystal to restore to its 

original orientation.  The igniters on gas grills 

are a good example of everyday use of the 

piezoelectric effect.  Depressing the button 

causes the spring-loaded hammer to strike a 

quartz crystal thereby producing a large 

potential that discharges across a gap to a metal 

wire igniting the gas.  

Quartz is by far the most widely utilized material 

for the development of instruments containing 

oscillators partly due to historical reasons (the 

first crystals were harvested naturally) and partly 

due to its commercial availability (synthetically 

grown nowadays). There are many ways to cut 

quartz crystal and each cut has a different 

vibrational mode upon application of a potential.  

The AT-cut has gained the most use in QCM 

applications due to its low temperature 

coefficient at room temperature.  This means 

that small changes in temperature only result in 

small changes in frequency.  It has a vibrational 

mode of thickness shear deformation as shown 

below in Figure 1. 

 

Quartz Crystal– No Applied Potential 

 

 

Quartz Crystal– Under Applied Potential 

 

Figure 1. Graphical Representation of 

Thickness Shear Deformation. 

 

The application of an alternating potential (a 

sine wave in nearly all cases) to the crystal faces 

causes the crystal to oscillate.  When the 

thickness of the crystal (tq) is twice the acoustical 

wavelength, a standing wave can be established 

where the inverse of the frequency of the 

applied potential is ½ of the period of the 

standing wave.  This frequency is called the 
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resonant frequency, f0, and is given by the 

equation  
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where µq is the shear modulus (a ratio of sheer 

stress to shear strain), ρq is the density, and tq is 

the crystal thickness.  The amount of energy lost 

during oscillation at this frequency is at a 

minimum.  The ratio of peak energy stored to 

energy lost per cycle is referred to as the quality 

factor, Q and is given by the equation  
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where fc is the center frequency and ∆fFWHM is the 

full width at half max.  This full width at half max 

is also called the bandwidth.  For quartz crystals 

in air, Q can exceed 100,000 while in solution Q 

decreases to ~3000. This is because the crystal 

has been damped by the solution.  This damping 

increases the amount of energy lost per cycle, 

decreasing Q as shown in Figure 2 below. 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of High Q and Low Q. 

 

Equivalent Circuit Model 

The mechanical model (Figure 3) of an 

electroacoustical system consists of a mass (M), 

a compliance (Cm), and a resistance (rf).  The 

compliance represents energy stored during 

oscillation and the resistance represents energy 

dissipation during oscillation.   

 

 

Figure 3. Quartz Crystal Microbalance 

Equivalent Mechanical Model. 

 

The QCM mechanical model can be electrically 

modeled in several different ways.  The easiest 

model to understand might be an RLC circuit as 

shown in Figure 4.   

 

Figure 4. RLC Circuit. 

 

Here R1 represents the energy dissipated during 

oscillation, C1 represents the energy stored 

during oscillation, and L1 represents the inertial 

component related to the displaced mass.  At 

the resonant frequency, fs, the impedance of the 

circuit is at a minimum and is equal in 

magnitude to R1 as shown in Figure 5. 
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Figure 5. Impedance Spectrum for a Series 

RLC Circuit. 

 

Making electrical contact to a quartz crystal is 

most easily done be addition of an electrode to 

each face of the crystal.  These electrodes 

introduce an additional capacitance (C0) in 

parallel with the series RLC as shown in Figure 6.  

This circuit is commonly referred to as the  

Butterworth – van Dyke (BvD) model. 

 
Figure 6.  Butterworth – van Dyke Equivalent 

Circuit Model. 

 

The circuit shown above now has two resonant 

frequencies, fs and fp, which stand for the series 

resonant frequency (as in the original RLC circuit) 

and the parallel resonant frequency, respectively.  

The impedance spectrum for the BvD model is 

shown below with a minimum at fs and a 

maximum at fp.   

 

 

Figure 7. Impedance Spectrum for the 

Butterworth – van Dyke Equivalent Circuit 

Model. 

 

Most commercial QCMs that rely upon a phase 

lock oscillator, manually cancel out C0, and only 

report the series resonant frequency, fs since fs 
~= f0 and fs is obviously dependent upon L1.  The 

eQCM 10M reports both frequencies, fs and fp, 
and a relative impedance spectrum. 

 

Since these two resonant frequencies are 

dependent upon L1, mass changes on the 

surface of the electrode will result in frequency 

changes.  When a deposited film is thin and 

rigid, the decrease in frequency can be directly 

correlated to the increase in mass using the 

Sauerbrey
4
 equation. 
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where f0 is the fundamental frequency of the 

crystal as defined in Equation (1), m is the mass 

added, n is the harmonic number (e.g. n = 1 for 

a 5 MHz crystal driven at 5 MHz), and µq and ρq 

are as defined above.  Equation (3) can be 

reduced to 

 

mCf f−=∆     (4) 

 

where Cf is the calibration constant.  The 

calibration constant for a 5 MHz At-cut quartz 

crystal in air is 56.6 Hz cm
2
 µg

-1
.   



The majority of electrochemical experiments will 

correspond to a low-loading case, allowing you 

to directly correlate changes in frequency with 

changes in mass using the Sauerbrey equation 

(4).   

 

Once a film has been deposited and the quartz 

crystal is immersed in a liquid, the BvD model 

can be modified as shown below to include 

coupling to the liquid.  

 

Figure 8. Equivalent Circuit Model for a 

Quartz Crystal Immersed in a Liquid 

 

Three new components account for the mass 

loading of the film, Lf, and the liquid loading 

(based on ηL and ρL), Ll and Rl.  Both new mass 

loadings Lf and Ll have the effect of reducing the 

frequency as indicated with the black arrow in 

the chart below.  The original BvD model (black 

curve) shows resonance approximately 300 kHz 

higher than the modified BvD model (red curve). 

Notice that the shapes of the resonance curves 

are identical despite the addition of the film and 

liquid loading.   
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Figure 9. Comparison of BvD and Modified 

BvD Models. 

Knowing the liquid’s viscosity and density allows 

one to calculate
3
 the expected frequency 

decrease upon immersing the crystal in that 

liquid using the equation 
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where fa is the frequency of the crystal in air, ηL 

is the viscosity of the liquid, ρL is the density of 

the liquid, µq is the shear modulus of the quartz 

crystal, and ρq is the density of the quartz crystal.   

 

For example, upon immersing the crystal in pure 

water, a frequency decrease of approximately 

800 Hz is expected.   

 

Equation (4) holds as long as the film is assumed 

to be thin and rigid.  When the film is no longer 

acoustically thin or is not rigid the BvD model 

can be modified further as shown below. 

 

 

Figure 10. One Possible Equivalent Circuit 

Model for a Quartz Crystal Coated with a 

Polymer Film and Immersed in a Liquid 

 

Two new features have been added – Film 

Loading (ηfρf) and Elasticity (µf).  A viscoelastic 

polymer will influence the resonant frequencies 

based on the film’s viscosity (ηf), density (ρf) and 

elasticity (µf).  If the polymer is rigid or ηfρf does 

not change during the experiment, there will be 

no change in peak shape and contributions from 

ηfρf can be ignored.  In cases where ηfρf does 

change during the experiment, the frequency, 

magnitude and shape of the peak will also 

change as shown in Figure 11.   
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Figure 11. Comparison of BvD and Viscous 

Polymer Modified BvD Models. 

 

Another way to visualize if ηfρf is changing 

during an experiment is to look at the reduced 

quality factor, QR as a function of time.  
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Changes in QR correspond to changing ηfρf .  

Quantifying changes in ηfρf is challenging 

mathematically and will not be explored further 

here.  The reader is directed to the literature
5
 for 

additional information at this time.   
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